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Abstract-The problem of snap-through buckling of a clamped, eccentrically stiffened shallow spherical cap
is considered under quasi-statically applied uniform pressure and a special case of dynamically applied
uniform pressure. This dynamic case is the constant load infinite duration case (step time-function) and it
represents an extreme case of blast loading-large decay time, small decay rate.

The analysis is based on the nonlinear shallow shell equations under the assumption of axisymmetric
deformations and linear stress-strain laws. The eccentric stiffeners are disposed orthogonally along directions
of principal curvature in such a way that the smeared mass, and extensional and flexural stiffnesses are
constant. The stiffeners are also taken to be one-sided with constant eccentricity, and the stiffener-shell
connection is assumed to be monolithic.

The method developed in an earlier paper is employed. In this method, critical pressures are associated
with characteristics of the total potential surface in the configuration space of the generalized coordinates.

In addition, buckling of the complete thin eccentrically stiffened spherical shell under uniform
quasi-statically applied pressure is considered, and these results are used to check the numerical answers.
The complete spherical shell is stiffened in the same manner as the shallow cap.

The results are presented in graphical form as load parameter vs initial rise parameter. Geometric
configurations corresponding to isotropic, lightly stiffened, moderately stiffened and heavily stiffened
geometries are considered. By lightly stiffened geometry one means that most of the extensional stiffness is
provided by the thin shell. A computer program was written to solve for critical pressures. The Georgia Tech
Univac 1108 high speed digital computer was used for this purpose.

NOTATION

a Radius to the reference surface of a thin spherical shell. in
An A. Cross-sectional area of the stiffeners. inch'

D Flexural stiffness of the sheet, inch-Ibs
D' Smeared f1exular stiffness of the stiffeners, inch-lbs

EP
, E' Extensional stiffnesses of the sheet and stiffeners respectively, lbs/in

e Stiffener eccentricity, in
E, En E. Young's modulus for sheet and stiffeners, psi

h Sheet thickness, in
H Rise of the sheet midsurface, in

In I. Second moment of stiffener area about own centroidal axes, in4

In I. Stiffener spacings, in
Mn M., Mr. Stiffened shell moment resultants, Ibs
Nn N., N r • Stiffened shell stress resultants, Ibs/in

q Applied pressure, psi
Q Nondimensionalized applied pressure

r, 0 Polar coordinates
T Kinetic energy, lb-inches

Td Kinetic energy volume density, psi
Uy Total potential, Ib-inches
UYd Total potential volume density, psi

u, v, w Displacement components of the reference surface, in
z Distance to the undeformed reference surface (from the boundary plane, rO-plane) in

f rn f ••, y... Reference surface strains
'1 Nondimensionalized normal displacement component

krn k••, kr• Changes in curvature and torsion at the reference surface. (per inch)

A Initial rise parameter { = 2[3(1- v')]1/4(h~J'''}
Ao Ratio of extensional stiffnesses (stiffener to sheet)

v Poisson's ratio

tProfessor, School of Engineering Science and Mechanics.
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p Ratio of the pressure at which the cap loses stability to the classical critical pressure for a complete sphere of
thickness h

po Ratio of flexural stiffnesses (stiffener to sheet)
g Dimensionless radial distance
t/J Stress function in polar co-ordinates Ob-in)

V2 Laplacian operator in polar co-ordinates

J. INTRODUCTION

The need for structural efficiency in aircraft and missile structures is a well recognized fact. Thus
structural instability, which can lead to failure, is a serious problem. Since thin-walled shallow
spherical caps have many uses in modern aerospace structures, the question of how to make the
most effective use of the material employed in their construction is important. Within the past
several years studies have shown that eccentrically stiffened shells could be one answer to this
problem. Typically, Harari, Singer and Baruch[l] showed that by using eccentric stiffeners the
buckling load to weight ratio of axially compressed circular cylinders could be increased by as
much as 50%.

Structural elements are often subjected to both quasi-static and dynamic lateral loads which
act toward the center of curvature. The typical response to such loading in shallow caps is
snap-through buckling or oil canning and is characterized by a visible and sudden jump from one
equilibrium configuration to another for which the displacements are larger than in the first. For
the loading to be considered quasi-static, the time rate of load application must be of such
magnitude that significant dynamic effects are not induced. However, dynamic load application
causes significant inertia effects which can substantially modify the critical conditions compared
to the quasi-static case. Thus, a knowledge of the behavior in both circumstances is most
desirable.

A large amount of experimental and analytical work has been done on the stability of
monocoque cylindrical and spherical shells and on eccentrically stiffened cylindrical shells.
Recently, Cole [2] performed a comprehensive parametric study of the effect of eccentric
stiffeners on the buckling of complete spheres and indicated that considerable weight savings can
be realized. His work also contains an excellent bibliography concerning eccentric stiffening
effects on thin shells from the time the effects were first recognized by Van der Neut[3] to the
present. There are, however, only a few studies, both analytical and experimental, of the buckling
characteristics of spherical caps with non-uniform wall construction, and in these studies
consideration was given only to quasi-static loading.

The study of the elastic stability of thin shallow isotropic spherical shells subjected to uniform
pressure dates back to the investigations of von Karman and Tsien [4]. Suhara [5] gives an
historical summary of pertinent research prior to 1960. In more recent times, the critical impulse
has been calculated by Humphreys and Bodner[6] using the Rayleigh-Ritz method. The same
problem was also studied by Budiansky and Roth [7] using the Galerkin method. At the same time
Budiansky and Roth solved the problem of dynamic snap-through under instantaneously applied
uniform pressure with infinite duration and reported results for a particular value of
height-thickness ratio. Archer and Lange [8] treated this problem numerically by replacing the
governing differential equations by finite difference equations.

Simitses [9] used a Ritz type procedure to find both the minimum possible dynamic load and
impulse for snap-through for a wide range of the height to thickness parameter. Experimentally.
Lock, Okubo and Whittier[lO] measured the dynamic snap-through load for two values of the
height-thickness ratio in which complete axisymmetric behavior was observed during
snap-through. In recent works both Stephens and Fulton[l1] and Stricklin and Martinez[12]
determined critical snap-through loads which are in good agreement for a wide range of
height-thickness ratios. These authors used finite difference and finite element displacement
methods respectively. Huang[13], in a recent paper, integrated the non-linear differential
equations by a finite difference method and an iterative procedure. He found critical loads for
dynamic snap-through that are in good agreement with the results of the two last mentioned
investigations [11-12].

Additional references on the subject may be found in a review article by Simitses [14) in 1974.
Finally, for the sake of completeness, the reader is referred to a number of publications [15-21]
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which deal with similar aspects of the problem, both analytically and experimentally, through
1974.

The buckling of a clamped eccentrically stiffened spherical cap under quasi-static loading has
been investigated by Bushnell [22-23] in recent papers using a finite difference technique. He,
however, did not present an extensive parametric study of the stiffener eccentricity effect.
Several other authors have made studies of the stability of eccentrically stiffened spherical
domes under quasi-static loading. Ebner [24] used an approximate method to calculate the general
instability loads of meridionally stiffened shallow domes under uniform external pressure. In this
work no account was taken of stiffener eccentricity. Crawford and Schwartz [25] calculated
bifurcation loads from a membrane state for grid-stiffened spherical domes. They idealized the
structure by considering it orthotropic and by neglecting the eccentricity of the stiffeners. In a
later analysis, Crawford [26] derived constitutive relations in which the effect of eccentricity was
included.

The problem, to be considered in this paper, is the definition and analysis of axisymmetric
snap-through buckling for an eccentrically stiffened clamped shallow spherical cap under
quasi-statically applied uniform pressure and one special case of dynamically applied uniform
pressure; instantaneously applied step (Heaviside function) loading with infinite duration.

2. TECHNICAL APPROACH

The method to be employed is similar to that used by Simitses [9] for the clamped isotropic
shallow shell. A Ritz-Galerkin procedure is used for the quasi-static case, and a modified
Ritz-Galerkin procedure is employed for the dynamic case. The two methods are approximate
and from the quasi-static buckling problem of shallow caps, as observed by Budiansky [27], it was
found that the buckling load derived from an energy method deviates from the exact solution
somewhat. He noted that this deviation increases with increases in the height-thickness ratios of
the shell. It is necessary, therefore, to examine the results obtained by this method as to their
range of applicability.

All load cases considered do not explicitly depend on time and exhibit such a load behavior
that the total mechanical system is conservative. Therefore Hamilton's integral, I, may be written
as

(1)

where Td is the kinetic energy volume density and UTd is the total potential energy volume
density. It should be noted that Td and UTd may be expressed solely in terms of the displacement
components u, v and w in the plane and normal to the plane of the circular boundary.

In the derivation of the kinetic and total potential energy volume densities the following
assumptions are made: (i) The deformation is axisymmetric. (ii) The effect of transverse shear
forces on the deformation is negligible. (iii) Rotatory and in-plane kinetic energies are considered
small compared to the normal kinetic energy. The last assumption was justified by
Reissner [28, 29] for the isotropic shell. Although the inclusion of stiffeners does add to the
rotatory and in-plane energy, it is felt that these terms can still be considered small in relation to
the normal kinetic energy. By neglecting these terms the critical loads found in this analysis will
be somewhat conservative.

Applying Hamilton's principle, the extremization of (1) with respect to u and v yields the
in-plane equation of motion (in-plane equilibrium). These equations are not explicitly dependent
on time because of assumption (iii). The third, equilibrium equation is obtained by setting the
generalized velocities equal to zero and performing the extrimization with respect to w.

A finite series of space-dependent functions with time-dependent (in general) coefficients is
assumed to represent the normal displacement w with each term of the series satisfying the
prescribed boundary conditions. By assuming the deflection shape a priori, the internal elastic
strain energy may be associated with the shape amplitudes in the following manner: A stress
function is used which identically satisfies in-plane equilibrium. Through the compatibility
equation and associated boundary conditions, the stress function is related to the normal
displacement w. Using this relation in the expression for the total potential yields the total
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potential surface in terms of the normal displacement w only. The time-dependent coefficients
are analogous to generalized coordinate~, and the total potential is thus a function of the loading,
overall structural geometry and the generalized coordinates, ai.

Setting the generalized velocities equal to zero and applying the principle of the stationary
value of the total potential gives the static equilibrium points of a conservative system. This
implies

i = 1,2, ... (2)

at every static equilibrium point. Critical pressures for this case are obtained by considering the
stability, in the small, of these equilibrium points through second variations. A snapping
phenomenon is possible if the total potential surface in the space of the generalized coordinates
has at least t'lree static equilibrium points of which two are stable (one near and one far). The
pressure is critical, when the near equilibrium point becomes unstable [9].

In considering the case of constant load with infinite duration, it is noted that for conservative
and stationary systems the Hamiltonian is constant.

T + UT = constant (3)

The total potential can be defined such that, if the initial kinetic energy is zero, the constant will be
zero.

T+ UT =0 (4)

Since the kinetic energy is a positive definite quantity, the presence of buckled or unbuckled
motion can be determined by examining the total potential surface.

The following definitions are needed for establishing the method used in this load case.
Possible locus: A possible locus on the total potential surface is one which corresponds at

every point of the locus to a non-negative kinetic energy.
Unbuckled motion: Unbuckled motion of the system is defined as any possible locus on the

total potential surface which completely encloses only the near equilibrium point.
Buckled motion: If the possible locus passes through or encloses other equilibrium points, or, if

the near equilibrium point becomes unstable, the motion is defined as buckled, and the system has
"snapped through".

Minimum possible critical load: The least upper bound of loads for which all possible loci
correspond only to unbuckled motion. At this load there exists at least one possible locus on the
total potential surface which the structure can follow to "snap-through". Thus the minimum
possible critical load for this case is obtained by solving simultaneously eqns (2) and

UT =0 (5)

at the unstable static equilibrium point.
As pointed out by Humphreys [30], the critical dynamic load obtained by the energy method

may not be correct. However, it will now be shown that the result obtained by this method will
always be a lower bound for the critical load. As the load increases in magnitude, the level of the
total potential corresponding to the unstable static equilibrium points decreases. Let qD represent
the magnitude of external load for which the value of the total potential at one static equilibrium
point is zero and a possible locus to that unstable point exists. Now, if q < qv, there are two
possibilities, either (i) all unstable equilibrium points have positive total potential energy, which
case there is no possible locus to those points, or (ii) some unstable static equilibrium points
might correspond to a nonpositive potential but there is no possible locus. In no circumstance is
there a way for the system to reach an unstable static equilibrium point if q < qv. Therefore, qD
represents a lower bound on external loads for snap-through.

One more point should be noted. The energy method provides true lower bounds only for the
mechanical system whose energy is' actually formulated. Thus, if a continuous system is
approximated by an "n" degree of freedom discrete system, and the energy is then formulated
for that discrete system, the resulting lower bounds are true only for the discrete system. The
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extent of applicability of the discrete system bounds to the continuous system depends on the
accuracy of the approximation.

In this paper, the applicability of the results has been judged by comparisons with data
derived from the "exact" solutions for the isotropic shell.

3. GOVERNING EQUATIONS FOR THE STIFFENED CAP

The thin shallow spherical cap is stiffened eccentrically in the circumferential and meridional
directions as shown in Fig. 1such that (i) the stiffeners are both on the same side, (ii) the stiffener
eccentricity is the same for all stiffeners and constant, and (iii) the smeared extensional and
flexural stiffnesses are the same along both the circumferential and meridional directions and
constant.

The basic geometry and notation for a clamped shallow spherical cap is shown in Figs. 1 and
2. The nonlinear strain-displacement and curvature-displacement relations known as the shallow
shell or Marguerre equations are taken from Sanders [31]. These equations are based on the
assumptions of (i) small strains, (ii) moderately small rotations with rotations about the normal
being neglected, and (iii) the Donnell-Mushtari-Vlasov approximation being made. In addition, it
is assumed that the shell deforms in an axisymmetric mode. Under these assumptions the

MIDSURFACE

v

u

Fig. 1. Geometry.

AXIS OF ROTATIONAL SYMMETRY

RHR

w

~:J~u"
Fig. 2. Sign convention.
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following basic kinematic relations can be written using the midsurface of the sheet as the
reference.

U
E•• =

r
yr. = 0 (6)

krr = - H,' .rr ;
1

ke. = -- W r:r . (7)

In the derivation of the constitutive relations for the combined sheet-stiffener system, as
shown in Fig. 1, the Kirchhoff-Love hypotheses as modified by Baruch and Singer [32] are used.
They assume that the stiffeners are close enough to be smeared and that they follow lines of
principal curvature. The eccentricity effect, or height of the stiffener center of gravity above the
midsurface, is retained by assuming that the strain varies linearly through the actual thickness of
the stiffeners and not through a smeared-out or "effective" thickness. The "integrated"
constitutive relations are

where

Eh
Nr• = 2(1 + 1') yr.

Mr = (D +D/ )krr + vDk.e + er2E/krr +erE/Err

M. = vDkrr + (D + De' )ke• + e.2 Ee'kee + eeEe'E••

(8)

(9)

D ' - E.I.cg ,

• - I. '
D ' = Erlr, g.

r lr'

E,_EeAe
• - I.

(10)

Ai and 1;,. are the cross-sectional area and the second moment of the area about centroidaJ axes
of the stiffeners respectively.

Next, if Ar and I r.. are taken to vary linearly in the plane of (u and v), as Ir does, then E/ and
D/ are constant. Furthermore, letting E/ Ee' = E.'D/ = Do' = D' and er = e. = e eqns (8) and
(9) become

Ny. = 0

My = (D + D S )k" + I'Dke• + e2E'krr + eE'E"

M. = vDk" +(D + D' )kee + e2E'ke• + eE'E••

Mre=O.

(11)

(12)

On the basis of the assumptions made, the following expressions may be written for the
energies

T = 1I'ahLR

w~,rdr

Ur = 211'LR

CD - qw)rdr

( 13)

(14)
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where U is the strain energy density function
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(15)

and q is the applied uniform pressure positive in the positive W direction. Next, a stress function,
ljJ, is introduced which satisfies identically the in-plane equilibrium equation

and
(16)

1
Nr = -ljJ.r

r
(17)

The compatibility equation for the cap under the assumption of rotationally symmetric
deformations and initial midsurface shape characterized by z = z(r) is as follows:

where

4 d4 2 d3 I d2 1 d
V =-d4+--d3-2d~+3-drrrrrrr

The boundary conditions at r = Rare:

W =0 W,r =0 u=O v =0 (19)

The last two of these boundary conditions can be expressed solely in terms of wand the stress
function ljJ following the steps outlined by Huang[33].

At r = R
v 1 eE'v

ljJ.rr - 1+ >'oR ljJ.r = 1+ >'0 W. rr

1(1 + >'0 - V) eE'v
ljJ.rrr - R 2 1+ >'0 ljJ.r = 1+ >'0 W. rrr

(20a)

(20b)

In addition, the auxiliary condition that all stresses and displacements at the center (r = 0) of
the shell must remain finite is also imposed on the problem.

Using the kinematic and constitutive relations, the strain energy density function and
consequently the total potential can be expressed solely in terms of the stress function, the
normal component of the displacement, and their space-dependent derivatives.

Furthermore, solution of the compatibility equation, eqn (18), subject to boundary conditions,
eqns (19) and (20) yields ljJ in terms of wand its space dependent derivatives. Then, taking this
expression for ljJ, the total potential may be expressed solely in terms of normal component of
displacement and its space dependent derivatives (all of the above mathematical steps are
omitted for the sake of brevity).

11' (R {2( W.r)2 f3 02 ( (r W
2
x )2 (2Hf3 0W)2 2 ( W.r) [

UT=f3oJo aO W' rr +7 +""4 Jo--:- dx +~ +CO + W' rr +7 2aoCo

4H r W
2
x ] [2H 2 C ] r W

2
x 4H C }+ R2aof3ow-aof30 Jo --:-dx - R2f30 W+ of3o Jo --:-dx+ R2f30 oW rdr

(21)
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( Ao ) £1'
D:o:::: e 1+ A

o
/)

(
I+Ao+II){ I+Ao rRW~r 1 rR(rr W2x ) 4H ( }

Co:::: (30 1 + Ao-II 1+ Ao+ II Jo ~dr - RZ Jo r Jo --:t dx dr + R4J, rwdr .

(22)

(23)

(24)

Nondimensionalization
It is convenient to nondimensionalize all dimensional quantities. The total potential IS

nondimensionalized by using the following relations

r
1::::::_"
!> R'

~

1Jo =Ti (25)

Using the quantities defined above, the following nondimensional expression for the total potential
is obtained.

Using the following non~dimensional constants

(26)

B,:::: 1+"\0+ II
1+Ao-II em

and the expression

the non-dimensional total potential can be written as

(28)

(29)

Nondimensionalized expression for Ur

The initial shape of the midsurface is assumed to be spherical and the meridional curve is
approximated by the parabola

DO)
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The spherical cap is assumed to be clamped along its circular boundary. Thus the boundary
conditions on the normal displacement, W, in nondimensionalized form are

d
7](1, 'T) = 0; 7]'(1, 'T) = 0; where ()' = dg'

The nondimensional vertical displacement, 7], is expressed in terms of the following series

oc

7] = L an ('T )[lo(kn1g) - Jo(knI)]
" =1

(31)

(32)

where kn 1 are the zeroes of J1(x) = 0 and each term of the series satisfies the boundary conditions,
eqns (31). The functions [Jo(kn10 - Jo(k/)] represent the axisymmetric buckling modes of an
eccentrically stiffened flat circular plate loaded by a uniformly applied edge thrust [34]. For the
dynamic case considered, the time-dependent coefficients, an ('T), are thought of as generalized
coordinates and the time history of the displacement is defined in terms of these coordinates. For
the quasi-static case, however, these coefficients become undetermined constants.

It is convenient now to define and/or evaluate certain integrals which occur in the expression
for the total potential energy, eqn (29). Using well-known properties of Bessel functions, the
following relations for the integrals are obtained (the superscript "1" on kn is dropped for
convenience)

(33)

and

(34)

where

(35)

also by defining

(36)

The following expression is obtained

and it can be shown that

rl 1 - 1 - -Jo 7]2gdg = 2~I an
2
J0

2
(kn)+2~I ];1 anamJo(kn)Jo(km)

f V~7]gdg = 0

f 7]V~7]gdg = -~.tl an2kn2J02(kn)

( 1 -
Jo 7]gdg = -2 ~I a.Jo(kn)

( g( r~ 7]:x dX)dg= i i anamanm10 Jo x n=1 m=l

(40)

(41)

(42)

(43)

(44)

(45)
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anm =f ~'Pnm (~)d~

Tnmp =f Jo(kn~)'PmpW~d~.

(46)

(47)

(48)

(49)

By using the integrals defined above, the total potential may be expressed as a polynomial of fourth
order in the generalized coordinates.

1 x x 00

-? B 2B 3B o 2: 2: QnQmanm - eOB 2B 3B o 2: QnJo(kn)
... n=l m=l n=1

o+ Ao+ v) 2 2 [Bo I ~ ~ • J2
- 2 [(1+ Ao) - v] 1+ Ao- v - 20 + Ao+ v) ~1 ~l QnQm'PnmO)

(50)

where

4. LINEAR ANAL YSIS FOR THE COMPLETE SPHERE

A linear analysis was performed on a complete sphere geometry similar to that used for the
spherical cap under quasi-statically applied uniform pressure. The buckling equation is derived
by allowing a primary state to exist and through linearization of the equilibrium equations by
assuming that the additional buckled state parameters are small by comparison to the primary
state parameters (bifurcation approach). Thus the problem is reduced to an eigenvalue problem.
The solution to the buckling equations can be written in terms of spherical harmonics and the
characteristic equation is (for more details see [2]).

qQ~IE~IJ2) [-n 2(n + ])2(1 +Ao+Ao~)+n(n + 1)(I-V+Ao+4Ao~)

+ 20 + v + Ao)] - n\n + ]f[{I + apo + AO( 1+~y}{a (I + po)

+Ao::}-{aO +po)+Ao~(1 +~Y}J

+ n
2
(n + 1)2[{ 1+ apo+ AO( 1+~Y}{aO + po- v)- Ao~ (2-~)}
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+{1- V +apo+Ao(1 +~r}{a(1 +po) +Ao::}

+2{ a(1 +po) +Ao~ (I +~) }{1+V - apo +AO(1- ::)}]

- n (n +1)[2(1 +V +Ao){1+apo +AO( 1+~r}

+{a(1- V +po)- Ao~(2-~)}{1- V +apo+ Ao(1 +~r}

- {I +V - apo+ Ao(l- ::)rJ +2(1 +V +Ao)[I- V +apo+ Ao(1 +~rJ = 0
(52)

where a = h 2/12a 2
, and n is the degree of the spherical harmonics. The above characteristic

equation corresponds to the case for which the load remains normal to the deflected midsurface
during buckling.

Critical loads are obtained through minimization of q with respect to integer values of n.

5. NUMERICAL SOLUTION AND RESULTS

Linear analysis
A computer program was written and numerical results were obtained for three geometric

configuration denoted by (a) light stiffening, (b) moderate stiffening, and (c) strong stiffening. The
Georgia Tech Univac 1108 high speed digital computer was used for this purpose. These results
are presented in graphical form in Fig. 3. The percent weight savings is obtained by comparing the
weight of an isotropic spherical shell, which has the same critical pressure as the stiffened shell,
to the weight of the stiffened shell. In Fig. 3 the load has been divided by the classical critical
pressure for a sphere of thickness h.

Spherical cap
Two-term solutions are obtained and the results are presented as plots of the ratio of critical
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Fig. 3a. General instability results of linear analysis. (Light stiffening).
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pressure to complete spherical shell critical pressure versus the initial rise parameter given by

H 112

A = 2[3(1- v')]lI'(~)
hoq

where h" is the sum of the sheet and stiffener smeared thicknesses.
The two-term approximation appears to be a good approximation for the range of A-values for

which axisymmetric response prevails.
In Fig. 4 results for the quasi-static case are presented for the same geometric configurations

as in the linear analysis. In addition, the isotropic geometry is used to establish the validity of the
two-term solution.

In Fig. 5 results for the dynamic case are presented for the same geometric configurations.
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6. CONCLUSIONS

By studying the generated data the following important conclusions may be drawn:
(I) For quasi-statically applied pressure on the complete sphere. inside stiffeners yield a

stronger configuration than outside stiffeners (see Fig. 3), This is also true for the spherical cap
for the range of A-values considered, but the effect diminishes as the eccentricity increases. Note
from Fig. 4 that the positive eccentricity curve lies above the negative eccentricity curve which
might suggest the reverse effect, but it is not so because of the normalizing factor (qcr for the
complete sphere).

(2) In order to sustain a given uniformly distributed pressure, the isotropic complete spherical
shell must be heavier than the stiffened shell. This savings increases with eccentricity. This effect
is verified for a number of spherical cap geometries (spot-checked).

(3) For the dynamic load case, snap-through is possible for A-values higher than some



Snap-through buckling of eccentrically stiffened shallow spherical caps 1049

mInImum A. This minimum A-value is approximately 3·2 for the isotropic geometry and it
increases with eccentricity for each configuration.

(4) For the dynamic case, inside stiffening yields a stronger configuration than outside
stiffening for the lower values of A. A reversal of this phenomenon might take place at some value
of A as suggested by the curves (see Fig. 5).

(5) The critical dynamic load is smaller than the quasi-statically applied critical load. The
reduction is anywhere from 20% to 65% depending on the initial rise parameter for the isotropic
geometry [9]. The same is true for the stiffened geometries with a slight dependence on stiffener
positioning. The upper limit of reduction is greater for inside stiffener configurations.
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